Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of pulsed laser annealing on deep level defects in electrochemically-deposited and furnace annealed CuInSe2 thin films

Identifieur interne : 000E24 ( Main/Repository ); précédent : 000E23; suivant : 000E25

Effects of pulsed laser annealing on deep level defects in electrochemically-deposited and furnace annealed CuInSe2 thin films

Auteurs : RBID : Pascal:13-0161923

Descripteurs français

English descriptors

Abstract

CuinSe2 (CISe) is a prototype material for the I-III-VI chalcopyrites such as Cu(In,Ga)(S,Se)2 used as absorber layers in thin film photovoltaic cells. Carefully-controlled pulsed-laser annealing (PLA) is a unique annealing process that has been demonstrated to improve the device performance of chalcopyrite solar cells. Here, we investigate the changes in defect populations after PLA of electrochemically-deposited CISe thin films previously furnace annealed in selenium vapor. The films were irradiated in the sub-melting regime at fluences inducing temperatures up to 840 ±100 K. Deep-level transient spectroscopy on Schottky diodes reveals that the activation energy of the dominant majority carrier trap changes non-monotonically from 215 ± 10 meV for the reference sample, to 330 ±10 meV for samples irradiated at 20 and 30 mJ/cm2, and then back to 215 ± 10 meV for samples irradiated at 40 mJ/cm2. A hypothesis involving competing processes of diffusion of Cu and laser-induced generation of In vacancies may explain this behavior.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0161923

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effects of pulsed laser annealing on deep level defects in electrochemically-deposited and furnace annealed CuInSe
<sub>2</sub>
thin films</title>
<author>
<name sortKey="Bhatia, A" uniqKey="Bhatia A">A. Bhatia</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Materials Science and Engineering, University of Utah</s1>
<s2>Salt Lake City</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Salt Lake City</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Meadows, H" uniqKey="Meadows H">H. Meadows</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire Photovoltaïque, University of Luxembourg</s1>
<s2>Belvaux</s2>
<s3>LUX</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Luxembourg (pays)</country>
<wicri:noRegion>Belvaux</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Oo, W M Hlaing" uniqKey="Oo W">W. M. Hlaing Oo</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Materials Science and Engineering, University of Utah</s1>
<s2>Salt Lake City</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Salt Lake City</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dale, P J" uniqKey="Dale P">P. J. Dale</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire Photovoltaïque, University of Luxembourg</s1>
<s2>Belvaux</s2>
<s3>LUX</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Luxembourg (pays)</country>
<wicri:noRegion>Belvaux</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Scarpulla, M A" uniqKey="Scarpulla M">M. A. Scarpulla</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Materials Science and Engineering, University of Utah</s1>
<s2>Salt Lake City</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Salt Lake City</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Electrical and Computer Engineering, University of Utah</s1>
<s2>Salt Lake City</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Salt Lake City</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0161923</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0161923 INIST</idno>
<idno type="RBID">Pascal:13-0161923</idno>
<idno type="wicri:Area/Main/Corpus">000E85</idno>
<idno type="wicri:Area/Main/Repository">000E24</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Activation energy</term>
<term>Annealing</term>
<term>Chalcopyrite</term>
<term>Copper</term>
<term>Copper Indium Selenides Mixed</term>
<term>DLTS</term>
<term>Deep energy levels</term>
<term>Deep level</term>
<term>Defect density</term>
<term>Defect level</term>
<term>Diffusion process</term>
<term>Electrodeposition</term>
<term>Gallium</term>
<term>Lamellar structure</term>
<term>Photovoltaic cell</term>
<term>Radiation effects</term>
<term>Schottky barrier diodes</term>
<term>Selenium</term>
<term>Solar cells</term>
<term>Thin film devices</term>
<term>Thin films</term>
<term>Vacancies</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Recuit</term>
<term>Niveau profond</term>
<term>Niveau énergie profond</term>
<term>Niveau défaut</term>
<term>Dépôt électrolytique</term>
<term>Couche mince</term>
<term>Structure lamellaire</term>
<term>Dispositif couche mince</term>
<term>Dispositif photovoltaïque</term>
<term>Cellule solaire</term>
<term>Densité défaut</term>
<term>Sélénium</term>
<term>Effet rayonnement</term>
<term>DLTS</term>
<term>Chalcopyrite</term>
<term>Cuivre Indium Séléniure Mixte</term>
<term>Cuivre</term>
<term>Gallium</term>
<term>Diode barrière Schottky</term>
<term>Energie activation</term>
<term>Processus diffusion</term>
<term>Lacune</term>
<term>CuInSe2</term>
<term>8115P</term>
<term>8460J</term>
<term>6855L</term>
<term>6180</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Cuivre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">CuinSe
<sub>2</sub>
(CISe) is a prototype material for the I-III-VI chalcopyrites such as Cu(In,Ga)(S,Se)
<sub>2</sub>
used as absorber layers in thin film photovoltaic cells. Carefully-controlled pulsed-laser annealing (PLA) is a unique annealing process that has been demonstrated to improve the device performance of chalcopyrite solar cells. Here, we investigate the changes in defect populations after PLA of electrochemically-deposited CISe thin films previously furnace annealed in selenium vapor. The films were irradiated in the sub-melting regime at fluences inducing temperatures up to 840 ±100 K. Deep-level transient spectroscopy on Schottky diodes reveals that the activation energy of the dominant majority carrier trap changes non-monotonically from 215
<sub>±</sub>
10 meV for the reference sample, to 330 ±10 meV for samples irradiated at 20 and 30 mJ/cm
<sup>2</sup>
, and then back to 215 ± 10 meV for samples irradiated at 40 mJ/cm
<sup>2</sup>
. A hypothesis involving competing processes of diffusion of Cu and laser-induced generation of In vacancies may explain this behavior.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>531</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Effects of pulsed laser annealing on deep level defects in electrochemically-deposited and furnace annealed CuInSe
<sub>2</sub>
thin films</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BHATIA (A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MEADOWS (H.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>OO (W. M. Hlaing)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>DALE (P. J.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SCARPULLA (M. A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Materials Science and Engineering, University of Utah</s1>
<s2>Salt Lake City</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Laboratoire Photovoltaïque, University of Luxembourg</s1>
<s2>Belvaux</s2>
<s3>LUX</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Electrical and Computer Engineering, University of Utah</s1>
<s2>Salt Lake City</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>566-571</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000500618870910</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>30 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0161923</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>CuinSe
<sub>2</sub>
(CISe) is a prototype material for the I-III-VI chalcopyrites such as Cu(In,Ga)(S,Se)
<sub>2</sub>
used as absorber layers in thin film photovoltaic cells. Carefully-controlled pulsed-laser annealing (PLA) is a unique annealing process that has been demonstrated to improve the device performance of chalcopyrite solar cells. Here, we investigate the changes in defect populations after PLA of electrochemically-deposited CISe thin films previously furnace annealed in selenium vapor. The films were irradiated in the sub-melting regime at fluences inducing temperatures up to 840 ±100 K. Deep-level transient spectroscopy on Schottky diodes reveals that the activation energy of the dominant majority carrier trap changes non-monotonically from 215
<sub>±</sub>
10 meV for the reference sample, to 330 ±10 meV for samples irradiated at 20 and 30 mJ/cm
<sup>2</sup>
, and then back to 215 ± 10 meV for samples irradiated at 40 mJ/cm
<sup>2</sup>
. A hypothesis involving competing processes of diffusion of Cu and laser-induced generation of In vacancies may explain this behavior.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15P</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60H55L</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60A80</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Recuit</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Annealing</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Niveau profond</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Deep level</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Nivel profundo</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Niveau énergie profond</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Deep energy levels</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Niveau défaut</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Defect level</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Dépôt électrolytique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Electrodeposition</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Structure lamellaire</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Lamellar structure</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Estructura lamelar</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Dispositif couche mince</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Thin film devices</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Dispositif photovoltaïque</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Photovoltaic cell</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Dispositivo fotovoltaico</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Cellule solaire</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Solar cells</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Densité défaut</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Defect density</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Densidad defecto</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Sélénium</s0>
<s2>NC</s2>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Selenium</s0>
<s2>NC</s2>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Effet rayonnement</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Radiation effects</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>DLTS</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>DLTS</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Chalcopyrite</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Chalcopyrite</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Cuivre Indium Séléniure Mixte</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Copper Indium Selenides Mixed</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Mixto</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Gallium</s0>
<s2>NC</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Gallium</s0>
<s2>NC</s2>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Diode barrière Schottky</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Schottky barrier diodes</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Energie activation</s0>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Activation energy</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Processus diffusion</s0>
<s5>31</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Diffusion process</s0>
<s5>31</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Proceso difusión</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Lacune</s0>
<s5>32</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Vacancies</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>CuInSe2</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>8115P</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>6855L</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>6180</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>140</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E24 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000E24 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0161923
   |texte=   Effects of pulsed laser annealing on deep level defects in electrochemically-deposited and furnace annealed CuInSe2 thin films
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024